International Journal of Yoga
Users online: 973 
Ahead of print | Login 
Home Bookmark this page Print this page Email this page Small font sizeDefault font size Increase font size 
About us Editors Current Issue Past Issues Instructions submission Subscribe Advertise

ORIGINAL ARTICLE Table of Contents   
Year : 2022  |  Volume : 15  |  Issue : 1  |  Page : 19-24
Cerebrovascular dynamics associated with yoga breathing and breath awareness

Division of Yoga and Clinical Neurophysiology, Patanjali Research Foundation, Patanjali Yogpeeth, Haridwar, Uttarakhand, India

Correspondence Address:
Shirley Telles
Patanjali Research Foundation, Patanjali Yogpeeth, Haridwar - 249 405, Uttarakhand
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijoy.ijoy_179_21

Rights and Permissions

Aims: Breath frequency can alter cerebral blood flow. The study aimed to determine bilateral middle cerebral arterial hemodynamics in high-frequency yoga breathing (HFYB) and slow frequency alternate nostril yoga breathing (ANYB) using transcranial Doppler sonography. Methods: Healthy male volunteers were assessed in two separate trials before, during, and after HFYB (2.0 Hz for 1 min, n = 16) and ANYB (12 breaths per minute for 5 min, n = 22). HFYB and ANYB were separately compared to breath awareness (BAW) and to control sessions. Statistical Analysis: The data were analyzed using repeated-measures ANOVA with Bonferroni adjusted post hoc tests. Results: During HFYB there was a decrease in end-diastolic velocity (EDV) and mean flow velocity (MFV) (P < 0.01 for left and P < 0.05 for right middle cerebral arteries; MCA) with an increase in pulsatility index (PI) for the right MCA (P < 0.05). During ANYB, there was a bilateral decrease in peak systolic velocity (P < 0.05 for left and P < 0.01 for right MCA), EDV (P < 0.01) and MFV (P < 0.01 for left and P < 0.001 for right MCA) and an increase in PI (P < 0.01). During BAW of the two sessions there was a decrease in lateralized flow and end-diastolic velocities (P < 0.05) and an increase in PI (P < 0.05). Conclusions: Changes in peak flow velocities and pulsatility indices during and after HFYB, ANYB, and BAW suggest decreased cerebrovascular blood flow and increased flow resistance based on different mechanisms.

Print this article  Email this article

  Similar in PUBMED
    Search Pubmed for
    Search in Google Scholar for
  Related articles
   Citation Manager
  Access Statistics
   Reader Comments
   Email Alert *
   Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded246    
    Comments [Add]    

Recommend this journal